
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 558 — #584

i
i

i
i

i
i

initializer_list Chapter 2 Conditionally Safe Features

void test3() // Print "100 200 300 " to stdout.
{

for (int i : {100, 200, 300})
{

std::cout << i << ' ';
}

}

Note that the use of a temporary std::initializer_list, as in the example above, is
supported in a range-based for loop only because lifetime extension (i.e., via binding to a
reference as opposed to copying) of this library object is magically tied by the language to
a corresponding lifetime extension of the underlying array. Without lifetime extension, this
for loop too would have been considered to have undefined behavior; again, see Pointer
semantics and lifetimes of temporaries below.
Finally, corresponding global std::begin and std::end free function templates are over-
loaded for std::initializer_list objects directly in the <initializer_list> header, but
see Annoyances — Overloaded free-function templates begin and end are largely vestigial
on page 570.

Pointer semantics and lifetimes of temporaries

An instance of the std::initializer_list class template is a lightweight proxy for a
homogeneous array of values. This type does not itself contain any data but instead refers
to the data via the address of that data. For example, std::initializer_list might be
implemented as a pair of pointers or a pointer and a length.
When a nonempty braced list is used to initialize an std::initializer_list, the compiler
generates a temporary array having the same lifetime as other temporary objects created in
the same expression. The std::initializer_list object itself has a special form of pointer
semantics understood by the compiler, such that the lifetime of the temporary array will
be extended to the lifetime of the std::initializer_list object for which the underlying
array was created. Importantly, the lifetime of this underlying array is never extended by
copying its proxy initializer-list object.
Consider an std::initializer<int> initialized with three values, 1, 2, and 3:
std::initializer_list<int> iL = {1, 2, 3}; // initializes il with 3 values

The compiler first creates a temporary array holding the three values. That array would
normally be destroyed at the end of the outermost expression in which it appears, but
initializing il to refer to this array extends its lifetime to be coterminous with il.
No such lifetime extension occurs under any other circumstances:
void assign3InitializerList() // BAD IDEA
{

iL = { 4, 5, 6, 7 }; // iL has dangling reference to a temporary array.
}

558

lorihughes
Cross-Out

lorihughes
Inserted Text
l
[lowercase l]

lorihughes
Cross-Out

lorihughes
Inserted Text
l
[lowercase l]

lorihughes
Cross-Out

lorihughes
Inserted Text
l
[lowercase l]



i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 559 — #585

i
i

i
i

i
i

Section 2.1 C++11 initializer_list

The temporary array created in the assignment expression above is not used to initialize
iL, so that temporary array’s lifetime is not extended; it will be destroyed at the end
of the assignment expression, leaving iL having a dangling reference to an array that no
longer exists; see Potential Pitfalls — Dangling references to temporary underlying arrays
on page 566.

Initialization of std::initializer_list<E> objects

The underlying array of an std::initializer_list<E> is a const array of elements of type
E, with length determined by the number of items in the braced list. Each element is copy
initialized by the corresponding expression in the braced list, and if user-defined conversions
are required, they must be accessible at the point of construction. Following the rules of
copy list initialization, narrowing conversions and explicit conversions are ill formed; see
Section 2.1.“Braced Init” on page 215:
struct X { operator int() const; };
void f(std::initializer_list<int>);

void testCallF()
{

f({ 1, '2', X() }); // OK, 1 is int.
// '2' has a language­defined conversion to int.
// X has a user­defined conversion to int.

f({ 1, 2.0 }); // Error, 2.0 has a narrowing conversion to int.
}

Note that, since the initializer is a constant expression, narrowing conversions from integer
literal constant expressions of a wider type are permitted, provided that they are lossless:
#include <initializer_list> // std::initializer_list

constexpr long long lli = 13LL;
const long long llj = 17LL;

void g(const long long arg)
{

std::initializer_list<int> x = { 0LL }; // OK, integral constant
std::initializer_list<int> y = { lli }; // OK, integral constant
std::initializer_list<int> z = { llj }; // OK, integral constant
std::initializer_list<int> w = { arg }; // Error, narrowing conversion

}

Type deduction of initializer_list

An std::initializer_list will not be deduced for a braced-initializer argument to a
function template having an unconstrained template parameter, but a braced-initializer

559

lorihughes
Cross-Out

lorihughes
Inserted Text
l
[lowercase l]

lorihughes
Cross-Out

lorihughes
Inserted Text
l
[lowercase l]

lorihughes
Line
Add a line here: 

std::initializer_list<int> v = { 1ll<<32 }; Error, narrowing conversion

lorihughes
Line
remove this blank line




