
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 567 — #593

i
i

i
i

i
i

Section 2.1 C++11 initializer_list

Ili jL2 = ({1, 2, 3}); // Error, illegal context for statement expression
Ili jL2ne ({1, 2, 3}); // Bug, direct initialization from a copy
Ili jL3 = ((1, 2, 3)); // Error, conversion from int to nonscalar requested
Ili jL3ne ((1, 2, 3)); // Error, no matching function call for (int)

Ili kL4 = {{1, 2, 3}}; // Error, conversion from braceenclosed list requested
Ili kL4ne {{1, 2, 3}}; // Error, " " " " " "
Ili kL5 = {(1, 2, 3)}; // Bug, copy initialization to singleint init list
Ili kL5ne {(1, 2, 3)}; // Bug, direct " " " " " "

As can be inferred from the code example above, the language treats direct and copy ini-
tialization of an std::initializer_list the same — i.e., as if the inaccessible constructor
used by the compiler to populate an std::initializer_list is declared without the explicit
keyword; see Section 2.1.“Braced Init” on page 215. If the list of values is enclosed in paren-
theses instead of braces, the list will be interpreted as either the use of the comma operator
(iL1, jL3, jL3ne, kL5, and kL5ne above) or a function call (iL1ne above). Furthermore, it
is important to avoid creating unnecessary copies, such as for jL2ne above: If the copy is
not elided by the compiler, jL2ne refers to an array whose lifetime has ended.2

Annoyances

Initializer lists must sometimes be homogeneous

Though an std::initializer_list<E> is clearly always homogeneous, the initializer list
used to create it in many cases can be a heterogeneous list of initializers convertible to the
common type E. When the value type E needs to be deduced, however, the braced list must
strictly be homogeneous:
#include <initializer_list> // std::initializer_list

void f(std::initializer_list<int>) {}

template <typename E>
void g(std::initializer_list<E>) {}

int main()
{

f({1, '2', 3}); // OK, heterogeneous list converts
g({1, '2', 3}); // Error, cannot deduce heterogeneous list
g({1, 2 , 3}); // OK, homogeneous list

auto x = {1, '2', 3}; // Error, cannot deduce heterogeneous list
auto y = {1, 2 , 3}; // OK, homogeneous list
std::initializer_list<int> z = {1, '2', 3}; // OK, converts

}

2In C++17, direct initialization of std::initializer_list from an implicitly created temporary
std::initializer_list will always work due to guaranteed copy elision.

567

lorihughes
Pencil
delete extraneous space and properly align dittos on the line below

lorihughes
Inserted Text
 {3}

lorihughes
Cross-Out

lorihughes
Inserted Text
, which

lorihughes
Cross-Out

lorihughes
Inserted Text
Note that copy elision plays no role here because braced-init-list is not an expression and has no type, and thus direct-non-list-initialization always results in a call to a constructor, even in the presence of C++17's guaranteed copy elision.




