“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 573 — #0599

Section 2.1 C++11 Lambdas

Anonymous Function Objects (Closures)

Lambda expressions provide a means of defining function objects at the point where they
are needed, enabling a powerful and convenient way to specify callbacks or local functions.

Description

Generic, object-oriented, and functional programming paradigms all place great importance
on the ability of a programmer to specify a callback that is passed as an argument to
a function. For example, the Standard Library algorithm, std::sort, accepts a callback
argument specifying the sort order:

#include <algorithm> // std::sort
#include <functional> // std::greater
#include <vector> // std::vector

template <typename T>
void sortDescending(std::vector<T>& v)

{
std::sort(v.begin(), v.end(), std::greater<T>());

3

The function object, std::greater<T>(), is callable with two arguments of type T and
returns true if the first is greater than the second and false otherwise. The Standard
Library provides a small number of similar functor types, but, for more complicated cases,
programmers must write a functor themselves. If a container holds a sequence of Employee
records, for example, we might want to sort the container by either name or salary:

#include <string> // std::string
#include <vector> // std::vector

struct Employee

{

std::string name;

long salary; // in whole dollars
Y

void sortByName(std::vector<Employee>& employees);
void sortBySalary(std::vector<Employee>& employees);

The implementation of sortByName can delegate the sorting task to the standard algo-
rithm, std::sort. However, to achieve sorting by the desired criterion, we will need to
supply std::sort with a callback that compares the names of two Employee objects. We
can implement this callback as a pointer to a simple function that we pass to std::sort:

573


lorihughes
Cross-Out

lorihughes
Inserted Text
int

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes




