“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 576 — #602

Lambdas Chapter 2 Conditionally Safe Features

#include <algorithm> // std::count_if
#include <numeric> // std::accumulate

std::size_t numAboveAverageSalaries(const std::vector<Employee>& employees)
{
///////27 const leng sum = std::accumulate(employees.begin(), employees.end(), OL,

SalaryAccumulator());

const leng average = sum / employees.size();
return std::count_if(employees.begin(), employees.end(),

SalaryIsGreater(average));

}

We now turn our attention to a syntax that allows us to rewrite these examples much
more simply and compactly. Returning to the sorting example, the rewritten code has the
name-comparison and salary-comparison operations expressed in place, within the call to
std::sort:

void sortByName2(std::vector<Employee>& employees)

{
std::sort(employees.begin(), employees.end(),
[1(const Employee& el, const Employee& e2)
{
return el.name < e2.name;
1)
}
,,,—””/;;;oid sortBySalary2(std: :vector<Employee>& employees)
{
std::sort(employees.begin(), employees.end(),
[](const Employee& el, const Employee& e2)
{
return el.salary < e2.salary;
1
}

In each case, the third argument to std::sort — beginning with [] and ending with the
nearest closing } — is called a lambda expression. Intuitively, for this case, one can
think of a lambda expression as an operation that can be invoked as a callback by the
algorithm. The example shows a function-style parameter list — matching that expected by
the std::sort algorithm — and a function-like body that computes the needed predicate.
Using lambda expressions, a developer can express a desired operation directly at the point
of use rather than defining it elsewhere in the program.

The compactness and simplicity afforded by using lambda expressions is even more evident
when we rewrite the average-salaries example:

std::size_t numAboveAverageSalaries2(const std::vector<Employee>& employees)

576

lorihughes
Sticky Note
Josh hates this code break. Push this line to the next page if possible.

lorihughes
Line
copied line goes here

lorihughes
Line
Delete this if necessary

lorihughes
Line
remove this blank line first

lorihughes
Cross-Out

lorihughes
Inserted Text
long long

lorihughes
Cross-Out

lorihughes
Inserted Text
int

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 577 — #0603

Section 2.1 C++11 Lambdas

if (employees.empty()) { return 0; }
const long sum = std::accumulate(employees.begin(), employees.end(), OL,
[1(1long currSum, const Employeeé& e)

{

return currsum + e.salary;

1

const long average = sum / employees.size();
return std::count_if(employees.begin(), employees.end(),
[average] (const Employeeé& e)

{

return e.salary > average;
3
}

The first lambda expression, above, specifies the operation for adding another salary to
a running sum. The second lambda expression returns true if the Employee argument, e,
has a salary that is larger than average, which is a local variable captured by the lambda
expression. A lambda capture is a set of local variables that are usable within the body
of the lambda expression, effectively making the lambda expression an extension of the
immediate environment. We will look at the syntax and semantics of lambda captures in
more detail in the next section, Parts of a lambda expression, below.

Note that the lambda expressions replaced a significant portion of code that was previously
expressed as separate functions or functor classes. Some of that code reduction is in the form
of documentation (comments), which increases the appeal of lambda expressions to a sur-
prising degree. Creating a named entity such as a function or class imposes on the developer
the responsibility to give that entity a meaningful name and sufficient documentation for a
future human reader to understand its abstract purpose, outside the context of its use, even
for one-off, nonreusable entities. Conversely, when an entity is defined right at the point of
use, it might not need a name at all, and it is often self-documenting, as in both the sorting
and average-salaries examples above. Both the original creation and maintenance of the
code are simplified.

Parts of a lambda expression

A lambda expression has a number of parts and subparts, many of which are optional. For
exposition purposes, let’s look at a sample lambda expression that contains all of the parts:

introducer
AN

/ \

[&, cap2, cap3](T1 argl, T2 arg2) mutable noexcept -> ReturnType {\{*...
\ /\ /\,—~—/ /

\% \'%
capture declarator body

0
/

577

lorihughes
Highlight
copy this line and paste it on p 576

lorihughes
Line
remove this blank line if that helps Josh gets his page break.

lorihughes
Sticky Note
fix as marked

lorihughes
Pencil

