
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 583 — #609

i
i

i
i

i
i

Section 2.1 C++11 Lambdas

auto c6 = [&, b]{ return a * b; };
// a is implicitly captured by reference, and b is explicitly
// captured by copy.

auto c7 = [=, &b]{ return a * b; };
// a is implicitly captured by copy, and b is explicitly
// captured by reference.

auto c8 = [a]{ return a * b; };
// Error, a is explicitly captured by copy, but b is not captured.

}

When a lambda expression appears within a nonstaticmember function, the this pointer
can be captured as a special case:
class Class1
{
public:

void mf()
{

auto c12 = [this]{ return this; }; // Explicitly capture this.
auto c13 = [=] { return this; }; // Implicitly capture this.

}
};

Both implicit and explicit capture of this capture the pointer value of this and do not
make a copy of the object pointed to by this. Redundant captures are not allowed; the
same name (or this) cannot appear twice in the lambda capture. Moreover, if the capture
default is &, then none of the explicitly captured variables may be captured by reference,
and if the capture default is =, then any explicitly captured entities can be neither captured
by copy nor this4:
class Class2
{
public:

void mf()
{

int a = 0;
auto c1 = [a, &a]{ /*...*/ }; // Error, a is captured twice.
auto c2 = [=, a]{ /*...*/ };

// Error, explicit capture of a by copy is redundant.
auto c3 = [&,&a]{ /*...*/ };

// Error, explicit capture of a by reference is redundant.
auto c4 = [=, this]{ return this; };

// Error, explicit capture of this with = capture default
}

};

4C++20 removed the prohibition on explicit capture of this with an = capture default. In fact, C++20
deprecated implicit capture of this when the capture default is = and instead requires [=, this] to capture
this in such situations.

583

lorihughes
Highlight
[set static in code font]




