
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 587 — #613

i
i

i
i

i
i

Section 2.1 C++11 Lambdas

public:
void mf()
{

auto c1 = [this]{ ++d_value; }; // Increment this>d_value.
d_value = 1;
c1();
assert(2 == d_value); // Change to d_value is visible.

}
};

Here, we captured this in c1 but then proceeded to modify the object pointed to by this
within the lambda body.5

A lambda expression can occur wherever other expressions can occur, including within other
lambda expressions. The set of entities that can be captured in a valid lambda expression
depends on the surrounding scope. A lambda expression that does not occur immediately
within block scope cannot have a lambda capture:
namespace ns1
{

int v = 10;
int w = [v]{ /*...*/ }();

// Error, capture in global/namespace scope.

void f5(int a = [v]{ return v; }()); // Error, capture in default argument.
}

When a lambda expression occurs in block scope, it can capture any local variables with
automatic (i.e., nonstatic) storage duration in its reaching scope. The Standard defines the
reaching scope of the lambda expression as the set of enclosing scopes up to and includ-
ing the innermost enclosing function and its parameters. Static variables can be used without
capturing them; see Lambda body on page 595:
void f6(const int& a)
{

int b = 2 * a;
if (a)
{

int c;
// ...

}
else
{

int d = 4 * a;
static int e = 10;

5In C++17, it is possible to capture *this, which results in the entire class object being copied, not just
the this pointer; for an example of why capturing *this might be useful, see Annoyances — Can’t capture
*this by copy on page 611.

587

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Highlight
[set static in code font]



i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 588 — #614

i
i

i
i

i
i

Lambdas Chapter 2 Conditionally Safe Features

auto c1 = [a]{ /*...*/ }; // OK, capture argument a from f5.
auto c2 = [=]{ return b; }; // OK, implicitly capture local b.
auto c3 = [&c]{ /*...*/ }; // Error, c is not in reaching scope.
auto c4 = [&]{ d += 2; }; // OK, implicitly capture local d.
auto c5 = [e]{ /*...*/ }; // Error, e has static duration.

}

struct LocalClass
{

void mf()
{

auto c6 = [b]{ /*...*/ }; // Error, b is not in reaching scope.
}

};
}

The reaching scope of the lambda expressions for c1 through c5, above, includes the local
variable d in the else block, b in the surrounding function block, and a from f6’s arguments.
The local variable, c, is not in their reaching scope and cannot be captured. Although e is
in their reaching scope, it cannot be captured because it does not have automatic storage
duration. Finally, the lambda expression for c6 is within a member function of a local
class. Its reaching scope ends with the innermost function, LocalClass::mf, and does not
encompass the surrounding block that includes a and b.
Only when the innermost enclosing function is a nonstatic class member function can this
be captured:
void f7()
{

auto c1 = [this]{ /*...*/ }; // Error, f5 is not a member function.
}

class Class6
{

static void sfa()
{

auto c2 = [this]{ /*...*/ }; // Error, sf1 is static.
}

void mf()
{

auto c3 = [this]{ /*...*/ }; // OK, mf is nonstatic member function.

struct LocalClass
{

static void sf2()
{

588

lorihughes
Cross-Out

lorihughes
Inserted Text
6

lorihughes
Cross-Out

lorihughes
Inserted Text
7

lorihughes
Cross-Out

lorihughes
Inserted Text
1

lorihughes
Highlight
[set static in code font]




