“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 590 — #616

Lambdas Chapter 2 Conditionally Safe Features

Note that a variable named in a lambda capture isn’t automatically captured. A variable is
captured only if it is ODR-used within the lambda expression:

#include <algorithm> // std::min

void f9()
{
int a = 0; // a is not a compile-time constant.
const int b = 2; // b is a compile-time constant.
auto c1 = [&]{ return 2 * a; }; // a is ODR-used; implicitly captured.
auto c2 = [&]{ return sizeof(a); }; // a is not 0DR-used; not captured.
auto c3 = [&]{ return 2 * b; }; // b 1is not ODR-used; not captured.
auto c4 = [&]{ return &b; }; // b is ODR-used; implicitly captured.
auto c5 = [&]{ std::min(b, 5); }; // b is ODR-used; implicitly captured.
}

In the above example, the lambda body for c1 ODR-uses a by reading its value and thus
captures a. Conversely, c2 does not capture a despite its name being used in the lambda
body because it is only used in the unevaluated operand of the sizeof operator, which does
not constitute the variable’s ODR~use. Similarly, ¢3 does not capture b because (1) b is a
compile-time constant and (2) c3 only uses b’s value, which also does not constitute ODR-
use of b (see Section 2.1.“constexpr Variables” on page 302). Finally, taking the address of
or binding a reference to a variable always constitutes the variable’s ODR-use; hence, both
c4, which directly takes the address of b, and c¢5, which passes b by const& to std: :min,
capture b.

Finally, a lambda capture within a variadic function template (see Section 2.1.“Variadic
Templates” on page 873) may contain a pack expansion:

#include <utility> // std::forward

template <typename... ArgTypes>
int f10(const char* s, ArgTypes&&... args);

template <typename... ArgTypes>
int f11(ArgTypes&&... args)

{
const char* s = "Introduction";
auto c1 = [=]{ return f§(s, args...); }; // OK, args... captured by copy
auto c2 = [s,&args...]{ return fg(s, std::forward<ArgTypes>(args)...); };
// OK, explicit capture of args... by reference
}

In the example above, the variadic arguments to f11 are implicitly captured using capture by
copy in the first lambda expression. Capturing by copy means that, regardless of the value
category (rvalue, lvalue, and so on) of the original arguments, the captured variables are all
lvalue members of the resulting closure. Conversely, the second lambda expression captures

590

lorihughes
Cross-Out

lorihughes
Inserted Text
10

lorihughes
Cross-Out

lorihughes
Inserted Text
10

