
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 595 — #621

i
i

i
i

i
i

Section 2.1 C++11 Lambdas

known return type (double). The second lambda expression returns a value by brace ini-
tialization, which is insufficient for deducing a return value. Again, the issue is resolved by
specifying the return type explicitly. Note that, unlike ordinary functions, a lambda expres-
sion cannot have a return type specified before the lambda introducer or lambda declarator:
auto c5 = int [] () { return 0; }; // Error, return type misplaced
auto c6 = [] int () { return 0; }; // Error, return type misplaced
auto c7 = [] () > int { return 0; }; // OK, trailing return type

Attributes (see Section 1.1.“Attribute Syntax” on page 12) that appertain to the type of call
operator can be inserted in the lambda declarator just before the trailing return type. If
there is no trailing return type, the attributes can be inserted before the open brace of the
lambda body. Unfortunately, these attributes do not appertain to the call operator itself,
but to its type, ruling out some common attributes:
#include <cstdlib> // std::abort
auto c1 = []() noexcept [[noreturn]] { // Error, [[noreturn]] on a type

std::abort();
};

Lambda body

Combined, the lambda declarator and the lambda body make up the declaration and defi-
nition of an inline member function that is the call operator for the closure type. For the
purposes of name lookup and the interpretation of this, the lambda body is considered
to be in the context where the lambda expression is evaluated (independent of the context
where the closure’s call operator is invoked).
Critically, the set of entity names that can be used from within the lambda body is not
limited to captured local variables. Types, functions, templates, constants, and so on —
just like for any other member function — do not need to be captured and, in fact, cannot
be captured in most cases. To illustrate, let’s create a number of entities in multiple scopes:
#include <iostream> // std::cout

namespace ns1
{

void f1() { std::cout << "ns1::f1" << '\n'; }
struct Class1 { Class1() { std::cout << "ns1::Class1()" << '\n'; } };
int g0 = 0;

}

namespace ns2
{

void f1() { std::cout << "ns2::f1" << '\n'; }

template <typename T>
struct Class1 { Class1() { std::cout << "ns2::Class1()" << '\n'; } };

595

lorihughes
Inserted Text
d

lorihughes
Highlight
remove code font




