“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 619 — #645

Section 2.1 C++11 noexcept Operator
static_assert(!noexcept(fo()), ""), // doesn't say it doesn't throw
static_assert(!noexcept(fi()), ""); // " " " " "
static_assert(!noexcept(f2()), "");, // f2 may throw an int.

static_assert(!noexcept(f3()), ""); // f3 " " o

static_assert(!noexcept(f4()), ""), // f4 may throw a double.
static_assert(!noexcept(f5()), ""); // f5 " " " "

static_assert(!noexcept(f6()), "");, // f6 may throw int or double.
static_assert(!noexcept(f7()), ""); // f7 " " " " "
static_assert(noexcept(f8()), "");, // f8 may not throw.

static_assert(noexcept(fo()), ""); // f9 " " "
There are, however, practical drawbacks to dynamic exception specifications.

1. Brittle — These classic, fine-grained exception specifications attempt to provide
excessively detailed information that is not programmatically useful and is subject
to frequent changes due to otherwise inconsequential updates to the implementation.

2. Expensive — When an exception is thrown, a dynamic-exception list must be searched
at run time to determine if that specific exception type is allowed.

3. Disruptive — When an exception reaches a dynamic=exception specification, the
stack must be unwound, whether or not the exception is permitted by that specifica-
tion, losing useful stack-trace information if the program is about to terminate.

These deficiencies proved, over time, to be insurmountable, and dynamic-exception specifi-
cations other than throw() were largely unused in practice.

As of C++11, dynamic-exception specifications are officially deprecated® in favor of the
more streamlined noexcept specifier (see Section 3.1.“noexcept Specifier” on page 1085),
which we introduce briefly in the next section.

Introducing noexcept exception specifications for functions

C++11 introduces an alternative exception-specification mechanism for arbitrary free func-
tions, member functions, and lambda expressions (see Section 2.1.“Lambdas” on page 573):

void f() noexcept(expr); // expr is a Boolean constant expression.
void f() noexcept; // same as void f() noexcept(true)

Instead of specifying a list of exceptions that may be thrown, whether any exception may be
thrown is specified. As with C+4-03, the lack of any annotation is the equivalent of saying
anything might be thrown (except for destructors, which are noexcept by default):

3C++417 removes std: :unexpected and all dynamic exception specifications other than throw(), which
becomes a synonym for noexcept before throw() too is removed by C++20.

619

lorihughes
Cross-Out
[delete hyphen and allow space]

lorihughes
Cross-Out
[delete hyphen and allow space]

lorihughes
Cross-Out
[delete hyphen and allow space]

