
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 619 — #645

i
i

i
i

i
i

Section 2.1 C++11 noexcept Operator

static_assert(!noexcept(f0()), ""); // doesn't say it doesn't throw
static_assert(!noexcept(f1()), ""); // " " " " "

static_assert(!noexcept(f2()), ""); // f2 may throw an int.
static_assert(!noexcept(f3()), ""); // f3 " " " "

static_assert(!noexcept(f4()), ""); // f4 may throw a double.
static_assert(!noexcept(f5()), ""); // f5 " " " "

static_assert(!noexcept(f6()), ""); // f6 may throw int or double.
static_assert(!noexcept(f7()), ""); // f7 " " " " "

static_assert(noexcept(f8()), ""); // f8 may not throw.
static_assert(noexcept(f9()), ""); // f9 " " "

There are, however, practical drawbacks to dynamic exception specifications.

1. Brittle — These classic, fine-grained exception specifications attempt to provide
excessively detailed information that is not programmatically useful and is subject
to frequent changes due to otherwise inconsequential updates to the implementation.

2. Expensive —When an exception is thrown, a dynamic-exception list must be searched
at run time to determine if that specific exception type is allowed.

3. Disruptive — When an exception reaches a dynamic-exception specification, the
stack must be unwound, whether or not the exception is permitted by that specifica-
tion, losing useful stack-trace information if the program is about to terminate.

These deficiencies proved, over time, to be insurmountable, and dynamic-exception specifi-
cations other than throw() were largely unused in practice.
As of C++11, dynamic-exception specifications are officially deprecated3 in favor of the
more streamlined noexcept specifier (see Section 3.1.“noexcept Specifier” on page 1085),
which we introduce briefly in the next section.

Introducing noexcept exception specifications for functions

C++11 introduces an alternative exception-specification mechanism for arbitrary free func-
tions, member functions, and lambda expressions (see Section 2.1.“Lambdas” on page 573):
void f() noexcept(expr); // expr is a Boolean constant expression.
void f() noexcept; // same as void f() noexcept(true)

Instead of specifying a list of exceptions that may be thrown, whether any exception may be
thrown is specified. As with C++03, the lack of any annotation is the equivalent of saying
anything might be thrown (except for destructors, which are noexcept by default):

3C++17 removes std::unexpected and all dynamic exception specifications other than throw(), which
becomes a synonym for noexcept before throw() too is removed by C++20.

619

lorihughes
Cross-Out
[delete hyphen and allow space]

lorihughes
Cross-Out
[delete hyphen and allow space]

lorihughes
Cross-Out
[delete hyphen and allow space]

