“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 624 — #650

noexcept Operator Chapter 2 Conditionally Safe Features

struct F : B // All special members of B are noexcept(false) apart
// from the destructor.

{
F() noexcept(false) = default; // default constructor
F(const F&) noexcept = default; // copy constructor
F& operator=(const F&) = default; // copy assignment
F(F&&) noexcept(true) = default; // move constructor
F& operator=(F&&) = default; // move assignment
~F() noexcept(true) = default; // destructor

i

Notice that, in class F in the code snippet above, both the copy and mowve constructors are
mislabeled as being noexcept (true) when the defaulted declaration would have made them
noexcept (false). Such inconsistency is not in and of itself an error until an attempt is
made to use that function; see Section 1.1.“Deleted Functions” on page 53:

void test()

{
F fo, f1; // OK, default constructor
F f2(f0); // Error, copy constructor is deleted.
fo = f1; // 0K, copy assignment
F f3(std::move(f@)); // Error, move constructor is deleted.
fo = std::move(fl); // OK, move assignment

} // OK, destructor

Note that the need for an ezact match between explicitly declared and defaulted noexcept
specifications is unforgiving in either direction. That is, had we, say, attempted to restrict the
contract of the class F above by decorating its destructor with noexcept(false) when
the defaulted implementation would have happened to have been noexcept(true), that
destructor would have nonetheless been implicitly deleted, severely crippling use of the class.

In C++20, mismatched explicit noexcept specification for a defaulted special member func-
tion no longer results in that member function being deleted. Instead, the explicit noexcept
specification is accepted by the compiler.® This behavior change was accepted as a defect
report, applying to C++11 and later, and is implemented, e.g., starting from Clang 9
(c. 2019), GCC 10.1 (c. 2020), and MSVC 16.8 (c. 2020).

Finally, the C4++11 specification does not address directly the implicit exception speci-
fication for inheriting constructors (see Section 2.1.“Inheriting €terg” on page 535), yet
most popular compilers handle them correctly in that they take into account the exceptions
thrown by the inherited constructor and all the member initialization involved in invocation
of the inherited constructor.

In C++14, all implicitly declared special member functions, including inheriting construc-
tors, are noexcept (false) if any function they invoke directly has an exception specification
that allows all exceptions; otherwise, if any of these directly invoked functions has a dynamic
exception specification, then the implicit member will have a dynamic exception specifica-

5See smith19.

624


lorihughes
Cross-Out

lorihughes
Inserted Text
Constructors




