“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 627 — #0653

Section 2.1 C++11 noexcept Operator

int f(int) noexcept; // Function f is noexcept(fa+sg).
int g(int); // Function g is noexcept(&rug).

static_assert(noexcept(f(17)), ""); // OK, f is noexcept(true).
static_assert(!noexcept(g(17)), ""); // 0K, g is noexcept(false).

Now suppose that we have two function calls within a single expression:

static_assert(noexcept(f(1)
static_assert(!noexcept(g(1)
static_assert(!noexcept(g(1)
static_assert(!noexcept(f(1)

f(2)), "");, // OK, f is noexcept(true).
g(2)), ""); // 0K, g is noexcept(false).
f(2)), "); /0K o '
9(2)), "My /0K '

+ + 4+ o+

When we consider composing two functions, the overall expression is noexcept if and only
if both functions are noexcept:

static_assert(noexcept(f(f(17))), ""), // 0K, f is noexcept(true).
static_assert(!noexcept(g(g(17))), ""); // 0K, g is noexcept(false).
static_assert(!noexcept(g(f(17))), ""); // oK, " " " "
static_assert(!noexcept(f(g(17))), ""), // ok, " " " "

The same applies to other forms of composition; recall from earlier that the specific operators
applied in the expression do not matter, only whether any potentially evaluated subexpres-
sion might throw:

static_assert(noexcept(f(1) || f(2)), ""); // 0K, f is noexcept(true).
static_assert(!noexcept(g(1) || g(2)), ""); // OK, g is noexcept(false).
static_assert(!noexcept(g(1) || f(2)), ""); // ok, " " " "
static_assert(!noexcept(f(1) || g(2)), ""); // oK, " " " "
static_assert(!noexcept(true || g(2)), ""); // OK, note g is never called!

Importantly, note that the final expression in the example above is mot noexcept even
though the only subexpression that might throw is never evaluated. This deliberate language
design decision eliminates variations in implementation that would trade off compile-time
speed for determining whether the detailed logic of a given expression might throw, but see
Annoyances — Older compilers invade the bodies of constexpr functions on page 654.

Applying the noexcept operator to move expressions

Finally, we come to the quintessential application of the noexcept operator. C++11 intro-
duces the notion of a move operation — typically an adjunct to a copy operation — as
a fundamentally new way to propagate the value of one object to another; see Section 2.1.
“Rvalue References” on page 710. For objects that have well-defined copy semantics (e.g.,
value semantics), a valid copy operation typically satisfies all of the contractual require-
ments of the corresponding move operation, the only difference being that a requested mowve
operation doesn’t require that the value of the source object be preserved:

627

lorihughes
Cross-Out

lorihughes
Inserted Text
true

lorihughes
Cross-Out

lorihughes
Inserted Text
false

