“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 631 — #657

Section 2.1 C++11 noexcept Operator

There are many ways in which an object might or might not provide a nonthrowing move
operation. As C2 in the example above suggests, even a C+403 class that happened to
decorate its explicitly declared copy constructor with throw() would automatically satisfy
the requirements of a nonthrowing move. A more likely scenario for a class designed prior
to C++11 to wind up with a nonthrowing move operation is that it followed the rule of
zero, thereby allowing each of the special member functions to be generated. In this case, all
that might be needed to generate a nonthrowing mowve constructor is simply to recompile it
under C++11! The takeaway here is that, irrespective of how a type is implemented, we can
use the noexcept operator in combination with std: :move to reliably determine, at compile
time, whether an object of a given type may throw when we ask it to move. Note that
while it is typical for C+403-targeted code to either have both copy and move operations
nonthrowing, or both potentially throwing, a C++03 template instantiated with a C++11
type might have the noexcept specification of the copy and move operations be distinct,
following those of the template argument type:

template <typename T>
struct NamedvValue

{
const—char® d_name;
T d_value;

3

While Namedvalue might be a class template shipping from a C++03-targeted library, the
copy constructor for this class will clearly be noexcept(false), but the move constructor
might be throwing or not based solely on the properties of the template argument, T.

Applying the noexcept operator to functions in the C Standard Library

According to the C++03 Standard”:

None of the functions from the Standard C library shall report an error by
throwing an exception, unless it calls a program-supplied function that throws
an exception.

This paragraph is accompanied by a footnote®:

That is, the C library functions all have a throw() exception-specification. This
allows implementations to make performance optimizations based on the absence
of exceptions at runtime.

Note that this footnote applies only to functions in the C Standard Library, not to arbitrary
functions having extern "C" linkage. It is not clear what the normative implications of
the footnote might be, as it seems to be a non-normative note clarifying something not

7iso03, section 17.4.4.8, “Restrictions on exception handling,” paragraph 2, p. 332
81bid., footnote 176, p. 332

631


lorihughes
Cross-Out

lorihughes
Inserted Text
std::string




