“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 632 — #658

noexcept Operator Chapter 2 Conditionally Safe Features

obviously implied by the normative text. Given the extra costs associated with C++03
exception specifications, there are no known implementations that took advantage of this
freedom.

For C++11, the footnote was revised to refer only to permitting the use of the new noexcept
exception specification, without further clarification of the normative text. There is, how-
ever, also general permission to add a nonthrowing exception specification to any nonvirtual
C++ Standard Library function, and it might be inferred that this provision gives imple-
mentations freedom to add such specifications to their C library wrappers too. Also note that
functions taking callbacks, such as bsearch and gsort, will propagate exceptions thrown by
the callback.

Again, there are no known implementations taking advantage of this freedom to add a
nonthrowing exception specification to C library functions, although all of the functions in
the <atomic> header intended for C interoperability are declared as noexcept, exploiting an
arguable interpretation of the intent of this footnote.

Constraints on the noexcept specification imposed for virtual functions

When using C++03-style dynamic-exception specifications, the exception specification of
any function override cannot be wider than that of the function being overridden:

struct BBO3

{
void n() throw();
virtual void f();
virtual void gi1() throw();
virtual void g2() throw();
virtual void g3() throw();
virtual void h() throw(int, double);

i

struct DDO3 : public BBO3

{
void n() throw(int); // 0K, hiding nonvirtual function
void n(char) throw(int); // OK, additional overload
virtual void f(); // OK, base lacks exception spec.
virtual void g1() throw(); // OK, same exception spec
virtual void g2() throw(int); // Error, wider exception spec (int)
virtual void g3(); // Error, wider exception spec (all)
virtual void h() throw(int); // OK, tighter exception spec

}i

Interestingly, the rules relating to virtual functions and noexcept are still defined by the
C++11 and C++14 Standards in terms of dynamic exception specifications, despite that
dynamic-exception specifications are deprecated. The C++14 Standard states®:

9isolla, section 15.4, “Exception specifications,” paragraph 5, p. 406

632


lorihughes
Cross-Out
[delete hyphen and allow space]

lorihughes
Cross-Out
[delete hyphen and allow space]




