“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 66 — #92

explicit Operators Chapter 1 Safe Features

Potential Pitfalls
Sometimes implicit conversion is indicated

Implicit conversions to and from common arithmetic types, especially int, are generally ill
advised given the likelihood of accidental misuse. However, for proxy types that are intended
to be drop-in replacements for the types they represent, implicit conversions are precisely
what we want. Consider, for example, a NibblecenstReference proxy type that represents
the 4-bit integer elements of a PackedNibbleVector:

class Nibble€enstReference

{
/7.

public:
operator int() const; // implicit
/7 ..

4

class PackedNibbleVvector

{
/..

public:
bool empty() const;
Nibblec€enstReference operator[](int index)—eenst;
/7 ...

}

The NibblecenstReference proxy is intended to interoperate well with other integral types
in various expressions, and making its conversion operator explicit hinders its intended
use as a drop-in replacement by requiring an explicit conversion, a.k.a. cast:

int firstOrZero(const PackedNibbleVector& values)

{
return values.empty()
?0
: values[0]; // compiles only if conversion operator is implicit

Sometimes a named function is better

Other kinds of overuse of even explicit conversion operators exist. As happens with any user-
defined operator, when the operation being implemented is not somehow either canonical
or ubiquitously idiomatic for that operator, expressing that operation by a named, i.e.,
nonoperator, function is often better. Recall from Description on page 61 that we used a
conversion operator of class Point to represent the distance from the origin. This example

66

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Cross-Out

