“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 77 — #103

Section 1.1 C++11 Function static "11

On the surface it may seem as though local and nonlocal objects of static storage duration are
effectively interchangeable, but clearly they are not. Even when clients cannot directly access
the nonlocal object due to giving it internal linkage by marking it static or putting it in
an unnamed namespace, the-initiatization-behaviersmake-such objects behave differently.

Dangerous recursive initialization

As with all other initialization, control flow does not continue past the definition of a static
local object until after the initialization is complete, making recursive static initialization
— or any initializer that might eventually call back to the same function — dangerous:

int fz(int i) // The behavior of the first call is undefined unless i is 0.

{

static int dz =i ? fz(i - 1) : 0; // Initialize recursively. (BAD IDEA)

return dz;
}
int main() A~ Fheprogram—is—ill formed-
{
int x = fz(5); // Bug, e.g., due to possible deadlock
}

In the example above, the second recursive call of fz to initialize dz has undefined behavior
because the control flow reached the same definition again before the initialization of the
static object was completed; hence, control flow cannot continue to the return statement
in fz. Given a likely implementation with a nonrecursive mutex or similar lock, the program
can potentially deadlock, though many implementations provide better diagnostics with an
exception or assertion violation when this form of error is encountered.®

Subtleties with recursion

Even when not recursing within the initializer itself, the rule for the initialization of static
objects at function scope becomes more subtle for self-recursive functions. Notably, the
initialization happens based on when flow of control first passes the variable definition and
not based on the first invocation of the containing function. Due to this, when a recursive
call happens in relation to the definition of a static local variable impacts which values
might be used for the initialization:

6Prior to standardization (see ellis90, section 6.7, “Declaration Statement,” pp. 91-92), C++ allowed
control to flow past a static function-scope variable even during a recursive call made as part of the
initialization of that variable. This behavior would result in the rest of such a function executing with a
zero-initialized and possibly partially constructed local object. Even modern compilers, such as GCC with
-fno-threadsafe-statics, allow turning off the locking and protection from concurrent initialization and
retaining some of the pre-C++498 behavior. This optional behavior is, however, dangerous and unsupported
in any standard version of C++.

77


lorihughes
Cross-Out

lorihughes
Inserted Text
during initialization

lorihughes
Cross-Out




