
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 789 — #815

i
i

i
i

i
i

Section 2.1 C++11 Rvalue References

might reasonably choose to copy values across nonlocal regions of memory even when move
operation are available.28

On the other hand, making a noncopyable type movable introduces a distinct new semantic.
If we know what it means to copy an object, then we have a complete specification for what it
means to move it. Without that specification, we’re charting new waters. Some of the reasons
why a given type is noncopyable might well apply to moves too. Again, some noncopyable
types might not have a natural uninitialized or “empty” state, so an appropriate moved-
from state will need to be designed, documented, and tested — irrespective of whether the
details of that state are made available to clients.
In practice, we find that most types of objects fall into two broad categories: (1) those that
are used to represent a platonic value (VST) and (2) those that perform some sort of service
(mechanism). Well-factored software components typically serve one or the other of these
roles, but not both. For example, std::complex<double> is a VST, whereas std::thread
is a mechanism. A standard container, such as std::vector, carries with it a fair amount
of machinery, but most of that is in support of its value, which is typically a sequence of
VSTs, whereas a scoped guard has no value whatsoever and serves only as a manager of the
lifetime of some externally created resource.
Objects that have been made noncopyable are typically so because there’s no platonic value
to copy. If all that’s needed is to share access to such mechanisms, then raw pointers might
be sufficient. If, however, the need is to pass around unique ownership of such a noncopyable
object, then that’s another story; see Use Cases — Passing around resource-owning objects by
value on page 771. In most cases, std::unique_ptr provides a standard and well-understood
idiom for passing around unique ownership of noncopyable objects without the risks and
development costs associated with crafting our own move-only type; see Implementing a
move-only type without employing std::unique_ptr on page 791.
For example, suppose we have a preexisting (possibly C++03) mechanism that currently
meets our needs. As this type doesn’t try to represent a value, it doesn’t implement any
copy operations, equality comparison operations, etc. Suppose also that this type allocates
dynamic memory. Although our mechanism cannot meaningfully be copied, it does have a
reasonable default constructed state and, with the advent of move semantics in C++11,
we could — in theory — implement arguably plausible move operations. Should we? What
would be the return on our investment?
Adding move operations to such an inherently noncopyable type is unlikely to yield any
meaningful utility that could not otherwise be achieved, far more safely and affordably,
by an external application of std::unique_ptr. In addition, any attempt to retrofit an
existing mechanism with move operations will invariably involve substantial development
effort. Moreover, great care would be needed to ensure that (1) the documentation reflects
the modified behavior, (2) appropriate new unit tests are added, and (3) the moved-from
state of the object behaves sensibly. What’s more, given that this mechanism might already
be in wide use, such an invasive enhancement might break preexisting client code, designed

28See halpern21c.

789

lorihughes
Inserted Text
s




