
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 832 — #858

i
i

i
i

i
i

Underlying Type '11 Chapter 2 Conditionally Safe Features

e_JUL , e_AUG, e_SEP,
e_OCT , e_NOV, e_DEC

};

static_assert(sizeof(Month) == 1 && alignof(Month) == 1, "");

With this revised definition of Month, the size of a Date class is 4 bytes, which is especially
valuable for large aggregates:
Date timeSeries[1000 * 1000]; // sizeof(timeSeries) is now 4Mb (not 12Mb).

Potential Pitfalls

External use of opaque enumerators

Providing an explicit underlying type to an enum enables clients to declare it as a complete
type without its enumerators. Unless the opaque form of its definition is exported in a header
file separate from its full definition, external clients wishing to exploit the opaque version
will be forced to locally declare it with its underlying type but without its enumerator list.
If the underlying type of the full definition were to change, any program incorporating its
own original and now inconsistent elided definition and the new full one would become
silently ill formed, no diagnostic required (IFNDR). (See Section 2.1.“Opaque enums”
on page 660.)

Subtleties of integral promotion

When used in an arithmetic context, one might naturally assume that the type of a classic
enum will first convert to its underlying type, which is not always the case. When used in
a context that does not explicitly operate on the enum type itself, such as a parameter to a
function that takes that enum type, integral promotion comes into play. For unscoped
enumerations without an explicitly specified underlying type and for character types such
as wchar_t, char16_t, and char32_t, integral promotion will directly convert the value
to the first type in the list int, unsigned int, long, unsigned long, long long, and
unsigned long long that is sufficiently large to represent all of the values of the under-
lying type. Enumerations having a fixed underlying type will, as a first step, behave as if
they had decayed to their underlying type.
In most arithmetic expressions, this difference is irrelevant. Subtleties arise, however, when
one relies on overload resolution for identifying the underlying type:
void f(signed char x);
void f(short x);
void f(int x);
void f(long x);
void f(long long x);

832

lorihughes
Cross-Out

lorihughes
Inserted Text
enumerations




