“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 875 — #0901

Section 2.1 C++11 Variadic Templates

Using conventional function templates, we can drastically reduce the volume of source code
required, albeit with some manageable increase in implementation complexity.

FEach of the N + 1 templates can be written to accept any combination of its M arguments
(0 < M < N) such that each parameter will independently bind to a const char*, an
std::string, or a char with no unnecessary conversions or extra copies at run time. Of the
exponentially many possible concat template instantiations, the compiler generates —
on demand — only those overloads that are actually invoked.

With the introduction of variadic templates in C++11, we are now able to represent variadic
functions such as add or concat with just a single template that expands automatically to

accept any number of arguments of any appropriate types — all by, say, const lvalue
reference:
template <typename... Ts>

std::string concat(const Ts&...);
// Return a string that is the concatenation of a sequence of zero or
// more character or string arguments --- each of a potentially distinct
// C++ type --- passed by const lvalue reference.

A variadic function template will typically be implemented with recursion to the same
function with fewer parameters. Such function templates will typically be accompanied by
an overload (templated or not) that implements the lower limit, in our case, the overload
having exactly zero parameters:

std::string concat();
// Return an empty string ("") of length 0.

The nontemplate overload above declares concat taking no parameters. Importantly, this
overload will be preferred for calls to concat having no arguments because thenontemptate
funetion—ig a better match than the variadic declaration, even though the variadic decla-
ration would also accept zero arguments.

Having to write just two overloads to support any number of arguments has clear advantages
over writing dozens of overloaded templates: (1) there is no hard-coded limit on argument
count, and (2) the source is dramatically smaller, more regular, and easier to maintain
and extend — e.g., it would be easy to add support for efficiently passing by forwarding
reference (see Section 2.1.“Forwarding References” on page 377). A second-order effect
should be noted as well. The costs of defining variadic functions with C++03 technology
are large enough to discourage such an approach in the first place, unless overwhelming
efficiency motivation exists; with C+411, the low cost of defining variadics often makes
them the simpler, better, and more efficient choice altogether. We return to the concat
function template and provide a complete implementation later; see Use Cases — Processing
variadic arguments in order on page 926.

Variadic class templates are another important motivating use case for this language feature.

A tuple is a generalization of std::pair that, instead of comprising just two objects, can
store an arbitrary number of objects of heterogeneous types:

875


lorihughes
Cross-Out

lorihughes
Inserted Text
it is not a template and is thus 




