
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 887 — #913

i
i

i
i

i
i

Section 2.1 C++11 Variadic Templates

template <typename T> class C3; // (1) primary declaration; C3 not variadic

template <typename K, typename V> // (2a) Specialize C3 for all Maps, C++03 style.
class C3<Map<K, V>>;

Variadics offer a terser, more flexible alternative:
template <typename... Ts> // (2b) Specialize C3 for all Maps, variadic style.
class C3<Map<Ts...>>;

// Note: Map works with pack expansion even though it's not variadic,
// but Ts... must comprise the number and types of arguments appropriate
// for instantiating one.

The most important advantage of (2b) over (2a) is flexibility. In maintenance, Map might
acquire additional template arguments, such as a comparison functor and an allocator.
Changing Map’s arguments requires surgery on C3’s specialization (2a), whereas (2b) will
continue to work unchanged because Map<Ts...> will accommodate any additional template
parameters Map might accummulate.
An application must use either the nonvariadic (2a) or the variadic (2b) partial specialization
but not both. If both are present, (2a) is always preferred because an exact match is always
more specialized than one that deduces a parameter pack.

Variadic alias templates

Alias templates (since C++11) are a new way to associate a name with a family of types
without needing to define forwarding glue code. For full details on the topic, see Section 1.1.
“using Aliases” on page 133. Here, we focus on the applicability of template parameter
packs to alias templates.
Consider, for example, the Tuple artifact that can store an arbitrary number of objects of
heterogeneous types:
template <typename... Ts> class Tuple; // Declare Tuple.

Suppose we want to build a simple abstraction on top of Tuple — a “named tuple” that has
an std::string as its first element, followed by anything a Tuple can store:
#include <string> // std::string

template <typename... Ts>
using NamedTuple = Tuple<std::string, Ts...>;

// Introduce alias for Tuple of std::string and anything.

In general, alias templates take template parameter packs following the same rules as pri-
mary class template declarations: An alias template is allowed to take at most one template
parameter pack in the last position. Alias templates do not support specialization or partial
specialization.

887

lorihughes
Cross-Out

[accumulate]




