“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 963 — #0989

Section 2.2 C++14 constexpr Functions '14

Optimized metaprogramming algorithms

C++14’s relaxed constexpr restrictions enable the use of modifiable local variables and
imperative language constructs for metaprogramming tasks that were historically often
implemented by using Byzantine recursive template instantiations, notorious for their
voracious consumption of compilation time.

Consider, as a simple example, the task of counting the number of occurrences of a given
type inside a type list represented here as a variadic template (see Section 2.1.“Variadic
Templates” on page 873) that can be instantiated using a variable-length sequence of arbi-
trary C++ types:

template <typename...> struct TypelList { };
// empty variadic template instantiable with arbitrary C++ type sequence

Explicit instantiations of this variadic template could be used to create objects:

TypeList<> emptyList;
TypeList<int> listofOneInt;
TypeList<int, long, double> listOfThreeIntLongDouble;

A naive C++11-compliant implementation of a metafunction Count, used to ascertain the
number of times a given C++ type was used when creating an instance of the TypelList
template (above), would usually make recursive use of involved partial class template
specialization to satisfy the single-return-statement requirements:

#include <type_traits> // std::integral_constant, std::is_same

template <typename X, typename List> struct Count;
// general template used to characterize the interface for the Count
// metafunction

// Note that this general template is an incomplete type.

template <typename X>

struct Count<X, TypelList<>> : std::integral_constant<int, 0> { };
// partial class template specialization of the general Count template
// (derived from the integral-constant type representing a compile-time
// 0), used to represent the base case for the recursion --- i.e., when
// the supplied TypelList is empty

// The payload (i.e., the enumerated value member of the base class)
// representing the number of elements of type X in the list is 0.

template <typename X, typename Head, typename... Tail>
struct Count<X, TypelList<Head, Tail...>>
: std::integral_constant<int,
std::is_same<X, Head>::value + Count<X, TypeList<Tail...>>::value> { };
// partial class template specialization of the general Count template
// for when the supplied list is not empty

963


lorihughes
Highlight
[set in code font]




