“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 989 — #1015

Section 22 C++14 Lambda Captures

MoveOnCopy(T&& object) : d_obj(std::move(object)) { }
MoveOnCopy (MoveOnCopy& rhs) : d_obj(std::move(rhs.d_obj)) { }

Y
void f()
{
std::unique_ptr<int> handle(new int(100)); // move-only
// Create an example of a handle type with a large body.
MoveOnCopy<decltype(handle)> wrapper(std::move(handle));
// Create an instance of a wrapper that moves on copy.
const-auto &cl = [wrapper]{ /* use wrapper.d_obj */ };
// Create a "copy" from a wrapper that is captured by copy.
}

In the example above, we make use of the bespoke (“hacky”) MoveOnCopy class template
to wrap a movable object; when the lambda-capture expression tries to copy the wrapper,
the wrapper in turn moves the wrapped handle into the body of the closure.

As an example of needing to move from an existing object into a closure, consider the
problem of accessing the data managed by std::unique_ptr (movable but not copyable)
from a separate thread — for example, by enqueuing a task in a thread pool:

ThreadPool: :Handle processDatasetAsync(std::unique_ptr<Dataset> dataset)

{

return getThreadPool().enqueueTask([data = std::move(dataset)]

{

return processDataset(data);
1
}

As illustrated above, the dataset smart pointer is moved into the closure passed to
enqueueTask by leveraging lambda-capture expressions — the std::unique_ptr is moved
to a different thread because a copy would have not been possible.

Providing mutable state for a closure

Lambda-capture expressions can be useful in conjunction with mutable lambda expressions
to provide an initial state that will change across invocations of the closure. Consider, for
instance, the task of logging how many TCP packets have been received on a socket (e.g.,
for debugging or monitoring purposes). In this example, we are making use of the C++11
mutable feature of lambdas to enable the counter to be modified on each invocation:

989


lorihughes
Cross-Out

lorihughes
Cross-Out




